陈积银
(陈积银简介,西安交通大学新闻与新媒体学院教授,博士生导师。中国数据新闻大赛创始人,西安交通大学青年拔尖人才(A类),中组部国家万人计划青年拔尖人才,陕西省智媒研究基地主任,福建省闽江学者特聘教授。曾获第六届全国广播影视“十佳百优”理论人才称号。主持中宣部、中组部、教育部等部委项目多项,在CSSCI期刊等发表论文40余篇。)
随着我国前沿科技的迭代更新,媒体融合不断向纵深发展,数据新闻应运而生。新闻生产方式的创新发展也反映出大众信息需求的变化。全媒体环境下,加强媒体融合视角下数据新闻的技术创新与理念创新成为数据新闻发展的题中应有之义。近年来,新文科建设的呼声高涨,数据新闻也成为新闻传播教育中颇有成效的尝试,推进了技术与人文教育的进一步融合。《中国新闻出版广电报》记者日前就媒体融合视角下数据新闻的发展前景及新文科思维背景下数据新闻人才培养等问题,采访了西安交通大学新闻与新媒体学院教授陈积银。
数据新闻教学应势而生
经过多年的发展与沉淀,数据新闻应用日臻成熟,业界成立了不少专门的制作团队,学界则设置相关课程以培养专业人才。
“数据新闻是在技术推动下发展起来的。”陈积银介绍说,在智能化、5G及媒体融合情境下,数据新闻融合也将获得新的发展机遇,朝着更加成熟与理性的方向发展。
陈积银认为,数据新闻的实践性、专业性非常强,业界的实践领先于学界,但无论是学界还是业界,人才匮乏的现象仍然存在。因此,数据新闻的未来发展方向主要集中在提升人员数据素养,培育数据发掘、可视化制作人才团队等几个方面。
由于学界、业界对数据新闻关注度逐渐提高,学界与业界融合也更加紧密。“学界与业界应积极构建平台,推动优质资源接轨,为数据新闻的发展蓄力。”陈积银建议,可以通过工作坊沙龙等形式进行培训与交流,关注数据新闻制作的核心环节,共同寻找难题的应对方案。
“为贯彻中央媒介融合有关精神,培养大数据时代的一流新闻人才,我于2015年创办了中国数据新闻大赛。”陈积银介绍,该赛事的初衷是“以赛促教”,为中国新闻教育更好地适应大数据时代需求提供探索平台,为国内新闻教育学界师生数据新闻作品提供展示平台。目前,该赛事已经成为引领国内重要新闻院校进行科教融合,开展学科交叉融合(传统新闻传播与现代信息技术)的一个新赛道,并获得业内不少数据新闻团队的认可与积极参与。西安交通大学通过大赛平台,有效促进了文、理、艺交叉的新闻传播教育探索,近年来培养了不少复合型、专家型、国际化的新型新闻人才。
“国内数据新闻的议题越来越多元,应进一步探索交互体验形式。”陈积银说,在每一届的中国数据新闻大赛作品中,都包含经济、政治、环境、民生、体育、娱乐等多种议题,而其交互性逐年提升。未来,将会有更多的创作团队对可听化的数据新闻进行探索,或将数据新闻与游戏等进行结合,实现内容形式和读者体验的双重升级。
探索学科交叉教学模式
“当前数据新闻在追求可视化效果的同时一定程度上忽略了新闻价值和社会功能。”陈积银认为,现在数据新闻在呈现形式上也存在一些问题。部分以网页形式呈现的数据新闻在移动端阅读时存在不兼容问题,导致数据新闻传播受阻。此外,移动阅读的快节奏和碎片化对数据新闻而言也是一个挑战,数据新闻在呈现方式上应注重数据的多样性、内容的交互性及叙事的多维度,以吸引受众阅读和交互。
“尽管当前数据新闻的制作还存在普惠性不强、交互性有待提高、可视化水平参差不齐、思想性有待提高等问题,但也呈现出有数据更有共享、有图表更有内容、有故事更有情怀、有融合更有信仰、有问题更有反思等鲜明特点。”陈积银建议,未来在选题方面,期望更多作品与“坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康”相结合;在数据使用规范方面,希望作品全面保障用户数据安全;在可视化呈现方面,期待作品在可视化实践时注重庞大数据的易读性,以增强传播效果。
“媒体融合大背景下,新闻人才培养特别是数据新闻人才培养过程中存在着一些亟待解决的问题。”陈积银认为,传统新闻学院的教育以文科为主,教师与学生存在技术性知识结构短板的问题,具备跨学科背景的数据新闻领域教师相对较少。目前,我国不少高校的新闻传播学院不断探索专业设置和教学设计,在发展中逐渐走向学科交叉的教学模式。同时,还应注重培养学生的数据思维和算法思维,积极学习数据新闻所需的技术性知识与技能。
“对于文科学生而言,网页制作、可视化技术等操作技能的学习,短期内掌握有些困难,这使得数据新闻教学局限于理论知识。”陈积银说,中国数据新闻大赛为学生们提供了一个理论与实践相结合的机会,缩小了数据新闻领域人才培养与新闻行业需求之间的差异。近几届大赛作品,在选题上内容多元、角度丰富、注重社会价值,在可视化呈现上技术多样、形式丰富、交互性强,在评审方面坚持学界、业界与政界相结合,在教学实践方面收到了良好的成效。
契合新文科背景要求
受疫情影响,智慧教育已成为教育模式转型发展的客观需求,慕课、云课堂现已成为教育新景象。这些新的教育模式颠覆了原有的传统教育模式,同时也促进了新闻传播教育的创新与发展。
“我们需要立足学界、携手业界、服务政界、融入世界,在传统的教育模式上进行自我教学革命。”陈积银认为,业界在技术研发方面的投入,政界在引智方面的投入,使得其在新闻传播技术、应用方面的水准远超学界。因此,当前的新闻传播教育一方面应积极改革,拥抱现代信息技术带来的红利;另一方面,也应保留原来教学中的先进经验,守住意识形态的红线,积极用马克思主义新闻观武装师生的头脑。
“作为新闻传播教育工作者也应完成相应的转变,进一步激发学生学习的主动性、积极性,培养学生的创造力、表达欲、动手能力和团队合作精神。”陈积银建议,一是转变原来上课靠书本的理念,将研讨式教学与体验式教学相结合、启发式教学与自主学习式教学相结合;二是转变原来的身份,从知识传授,转化为方向引领、动力激励、方法指导、结果督察和过程讨论;三是提升前沿知识的学习与科研能力,向学生传授新闻传播国际前沿知识。
“西安交通大学新闻与新媒体学院以工字牌为旗帜,新闻人才培养方案的建设契合了新文科建设背景下新闻教育改革的整体趋势。”陈积银介绍,新闻与新媒体学院组建计算机、公共管理、新闻传播等多学科背景的核心师资队伍,根据新文科建设理念与市场需求,建设协同育人基地以提升学生的数据素养。学院与政企共建的“陕西省智媒研究基地”沿用文理交叉的思路,背靠政界、立足学界、携手业界,为学生提供全智能化的平台资源,使学生在学习传统新闻采编技能的同时,学习短视频摄制、大数据舆情分析等新媒体技术技能。
在教学实践方面,陈积银一直鼓励学生放下课本、走出校园、走进社会,在实践中发现问题、解决问题。他介绍说:“在数据新闻课程教学上,我鼓励同学们根据特长和兴趣自由组队,走到社会上采访调研、收集数据、自主解决难题,共同完成一个数据新闻作品的制作。同学们认为这种学习方式动手操作性强,比课堂教学收获更大。”
“通过鼓励学生们自由组队参加中国数据新闻大赛,磨炼提升了他们的团队合作、沟通协调、专业实践以及前沿探索等各项能力。”陈积银认为,大赛“以赛育人”“以赛促教”,推动了传统新闻传播教育模式向现代化转型,引导学生在作品制作中从简单的多学科知识累加向多学科知识相融转变。同时,也为高校学生和新闻工作者搭建起新闻传播教育学界与业界沟通的桥梁。
(中国新闻出版广电报记者 杜一娜 常湘萍)
ChatGPT搞钱行不行******
一系列的试探之后,AI聊天机器人ChatGPT的收费计划浮出水面。当地时间2月1日,人工智能实验室Open AI在其官网宣布将推出“ChatGPT Plus”付费订阅版本,每月收取20美元。免费了两个月,月活用户却达1亿的ChatGPT,终于踏上了自己的“赚钱路”,由此,AIGC商业化落地的探讨也陡然升温。不少人迫切地想知道,ChatGPT Plus会不会是AIGC从烧钱到赚钱的关键转折。
免费服务仍将继续
“新晋顶流”ChatGPT用收费计划再次搅动了AI圈的一池春水。根据Open AI的公告,订阅ChatGPT Plus服务的用户,即使在高峰时段,也可获得该聊天机器人更快速的回应,而且可以提前体验新功能和改进。
去年11月,ChatGPT横空出世,不仅能够通过学习和理解人类的语言与用户进行对话,还能根据上下文互动,甚至能够完成撰写文案、翻译等工作。得益于这种突破性的使用体验,ChatGPT迅速蹿红。
当地时间2月1日,瑞银发布研究报告称,截至今年1月,近期爆火的ChatGPT在推出仅两个月后,其月活跃用户估计已达1亿,成为历史上用户增长最快的消费应用。同样的成绩,海外版抖音TikTok在全球发布后,花了大约9个月的时间,Instagram则花了两年半的时间。
但大量用户涌入的同时,也导致ChatGPT经常在流量压力之下无法提供及时的回应,此次收费版的ChatGPT Plus针对的便是这一痛点。
据悉,付费计划将在未来几周内首先在美国推出,然后扩展到其他国家。但ChatGPT Plus的推出并不意味着取代免费版的ChatGPT,Open AI表示,将继续为ChatGPT提供免费访问。
烧不起的模型成本
尽管只推出了两个月,但Open AI对于ChatGPT的收费计划却已经暗示了有一阵子。早在1月初,Open AI就曾提出过专业版ChatGPT的计划,宣布“开始考虑如何使ChatGPT货币化”,并公布了一项调查。什么价格以上会无法接受?什么价格以下会觉得太便宜?诸如此类关于定价的问题皆在其中。
有用户曾在社交媒体上提问ChatGPT是否会永久免费,对此,Open AI首席执行官Sam Altman回应称:“我们将不得不在某个时间点,以某种方式将其商业化,因为运算成本令人瞠目结舌。”Sam Altman曾透露,ChatGPT平均每次的聊天成本为“个位数美分”。
“这类大模型训练成本非常高。”在接受北京商报记者采访时,瑞莱智慧高级产品经理张旭东表示。
但相对训练来说,模型推理,也就是用户提交输入模型输出结果的过程,这一成本会更高。“据说ChatGPT在开放测试阶段每天要花掉200万美元的服务器费用,所以前段时间免费的公测也停止了,如何降低模型推理的消耗也是目前的一个重要研究问题。”张旭东称。
“钱景”在哪
长久以来,广阔的市场前景和难以盈利的现状几乎成为了AI领域难以平衡的理想和现实,对ChatGPT或者说是以ChatGPT为代表的AIGC也是一样。
洛克资本副总裁史松坡对北京商报记者分析称,ChatGPT受到广泛认可的重要原因是引入新技术RLHF,即基于人类反馈的强化学习。在史松坡看来,ChatGPT是一个高效的信息整合助手,可以取代大量人类中初级助理的角色。
但他同时提到,目前ChatGPT在海外英文环境中已经能胜任图画创作、音乐创作、文字整理、信息搜集综合、基础编程和金融分析,但还不能胜任高频度的人类主观决策,比如大型投资决策、政治战略决策等。
天使投资人、知名互联网专家郭涛认为,ChatGPT在重塑众多行业或场景的同时也孕育着巨大的商机,将推动众多行业快速变革,有望在AIGC、传媒、娱乐、教育、客户服务、医疗健康、元宇宙等领域快速落地,具有万亿级市场规模。
张旭东认为,AIGC商业化落地还需要结合应用场景,目前基于生成式大模型的商业应用案例还比较少,就以当下的技术水平看,一两年内达到很好的AGI(通用人工智能)水平还是不太现实的,所以一定需要有垂直领域的创新公司来基于OpenAI等公司的工作来寻找合适的场景落地。
AIGC商业化,侵权与被侵权
AIGC要想商业化,场景只是其一。伴随着ChatGPT的爆火,争议始终并行,比如AI绘画面临的版权探讨。学术界也已针对ChatGPT做出了反应,权威学术出版机构Nature规定,ChatGPT等大模型不能被列为作者。纽约市教育部门曾表示,纽约公立学校的所有设备和网络上将禁止使用ChatGPT。
张旭东认为,目前AIGC最为成熟的应用在内容作品创作上,但从专业角度看,AIGC属于模仿创新,并不具备真正的创造力,AIGC的作品可能对一些艺术家、创作家的风格题材造成侵权;另一方面,AIGC作品也存在被他人侵权的风险。
此外,就安全性问题而言,AIGC这种深度生成能力很可能被滥用于伪造虚假信息,比如生成一些敏感性的有害信息,甚至伪造新闻信息恶意引导社会舆论,而且这些生成式内容难以分辨追踪,大幅增加对信息治理的挑战难度。信息获取也是AIGC需要解决的问题之一。
郭涛则提到,当前AIGC赛道尚处于孕育探索阶段,存在关键核心技术不成熟、免费素材资源较少、内容堆砌且质量参差不齐、成熟的商业应用场景较少、相关法律法规不健全及技术伦理挑战等突出问题,短期内还难以实现大规模商业化应用。
北京商报记者 杨月涵
(文图:赵筱尘 巫邓炎)